1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
| import numpy as np import pandas as pd import pathlib, sys, os, random, time import numba, cv2, gc from tqdm import tqdm_notebook
import matplotlib.pyplot as plt %matplotlib inline
import warnings warnings.filterwarnings('ignore')
from tqdm.notebook import tqdm # albumentations 是一个给予 OpenCV的快速训练数据增强库,拥有非常简单且强大的可以用于多种任务(分割、检测)的接口,易于定制且添加其他框架非常方便 import albumentations as A #Rasterio是基于GDAL库二次封装的更加符合Python风格的主要用于空间栅格数据处理的Python库 import rasterio from rasterio.windows import Window
def rle_encode(im): ''' im: numpy array, 1 - mask, 0 - background Returns run length as string formated ''' pixels = im.flatten(order = 'F') pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs)
def rle_decode(mask_rle, shape=(512, 512)): ''' mask_rle: run-length as string formated (start length) shape: (height,width) of array to return Returns numpy array, 1 - mask, 0 - background
''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape, order='F')
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as D
import torchvision from torchvision import transforms as T
EPOCHES = 20 BATCH_SIZE = 16 # BATCH_SIZE = 32 IMAGE_SIZE = 256 DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
trfm = A.Compose([ A.Resize(IMAGE_SIZE, IMAGE_SIZE), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.RandomRotate90(), ])
class TianChiDataset(D.Dataset): def __init__(self, paths, rles, transform, test_mode=False): self.paths = paths self.rles = rles self.transform = transform self.test_mode = test_mode self.len = len(paths) self.as_tensor = T.Compose([ T.ToPILImage(), T.Resize(IMAGE_SIZE), T.ToTensor(), T.Normalize([0.625, 0.448, 0.688], [0.131, 0.177, 0.101]), ]) # get data operation def __getitem__(self, index): img = cv2.imread(self.paths[index]) if not self.test_mode: mask = rle_decode(self.rles[index]) augments = self.transform(image=img, mask=mask) return self.as_tensor(augments['image']), augments['mask'][None] else: return self.as_tensor(img), '' def __len__(self): """ Total number of samples in the dataset """ return self.len train_mask = pd.read_csv('./train_mask.csv', sep='\t', names=['name', 'mask']) train_mask['name'] = train_mask['name'].apply(lambda x: './train/' + x)
img = cv2.imread(train_mask['name'].iloc[0]) mask = rle_decode(train_mask['mask'].iloc[0])
print(rle_encode(mask) == train_mask['mask'].iloc[0])
dataset = TianChiDataset( train_mask['name'].values, train_mask['mask'].fillna('').values, trfm, False )
image, mask = dataset[0] plt.figure(figsize=(16,8)) plt.subplot(121) plt.imshow(mask[0], cmap='gray') plt.subplot(122) plt.imshow(image[0]);
valid_idx, train_idx = [], [] for i in range(len(dataset)): if i % 7 == 0: valid_idx.append(i) # else: elif i % 7 == 1: train_idx.append(i) train_ds = D.Subset(dataset, train_idx) valid_ds = D.Subset(dataset, valid_idx)
# define training and validation data loaders loader = D.DataLoader( train_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
vloader = D.DataLoader( valid_ds, batch_size=BATCH_SIZE, shuffle=False, num_workers=0) def get_model(): model = torchvision.models.segmentation.fcn_resnet50(True) # pth = torch.load("../input/pretrain-coco-weights-pytorch/fcn_resnet50_coco-1167a1af.pth") # for key in ["aux_classifier.0.weight", "aux_classifier.1.weight", "aux_classifier.1.bias", "aux_classifier.1.running_mean", "aux_classifier.1.running_var", "aux_classifier.1.num_batches_tracked", "aux_classifier.4.weight", "aux_classifier.4.bias"]: # del pth[key] model.classifier[4] = nn.Conv2d(512, 1, kernel_size=(1, 1), stride=(1, 1)) return model
@torch.no_grad() def validation(model, loader, loss_fn): losses = [] model.eval() for image, target in loader: image, target = image.to(DEVICE), target.float().to(DEVICE) output = model(image)['out'] loss = loss_fn(output, target) losses.append(loss.item()) return np.array(losses).mean() model = get_model() model.to(DEVICE);
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-3)
class SoftDiceLoss(nn.Module): def __init__(self, smooth=1., dims=(-2,-1)):
super(SoftDiceLoss, self).__init__() self.smooth = smooth self.dims = dims def forward(self, x, y): tp = (x * y).sum(self.dims) fp = (x * (1 - y)).sum(self.dims) fn = ((1 - x) * y).sum(self.dims) dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth) dc = dc.mean() return 1 - dc bce_fn = nn.BCEWithLogitsLoss() dice_fn = SoftDiceLoss()
def loss_fn(y_pred, y_true): bce = bce_fn(y_pred, y_true) dice = dice_fn(y_pred.sigmoid(), y_true) return 0.8*bce+ 0.2*dice header = r''' Train | Valid Epoch | Loss | Loss | Time, m ''' # Epoch metrics time raw_line = '{:6d}' + '\u2502{:7.3f}'*2 + '\u2502{:6.2f}' print(header)
EPOCHES = 5 best_loss = 10 for epoch in range(1, EPOCHES+1): losses = [] start_time = time.time() model.train() for image, target in tqdm_notebook(loader): image, target = image.to(DEVICE), target.float().to(DEVICE) optimizer.zero_grad() output = model(image)['out'] loss = loss_fn(output, target) loss.backward() optimizer.step() losses.append(loss.item()) # print(loss.item()) vloss = validation(model, vloader, loss_fn) print(raw_line.format(epoch, np.array(losses).mean(), vloss, (time.time()-start_time)/60**1)) losses = [] if vloss < best_loss: best_loss = vloss torch.save(model.state_dict(), './model_best.pth') trfm = T.Compose([ T.ToPILImage(), T.Resize(IMAGE_SIZE), T.ToTensor(), T.Normalize([0.625, 0.448, 0.688], [0.131, 0.177, 0.101]), ])
subm = []
model.load_state_dict(torch.load("./model_best.pth")) model.eval()
test_mask = pd.read_csv('./test_a_samplesubmit.csv', sep='\t', names=['name', 'mask']) test_mask['name'] = test_mask['name'].apply(lambda x: './test_a/' + x)
for idx, name in enumerate(tqdm_notebook(test_mask['name'].iloc[:])): image = cv2.imread(name) image = trfm(image) with torch.no_grad(): image = image.to(DEVICE)[None] score = model(image)['out'][0][0] score_sigmoid = score.sigmoid().cpu().numpy() score_sigmoid = (score_sigmoid > 0.5).astype(np.uint8) score_sigmoid = cv2.resize(score_sigmoid, (512, 512))
# break subm.append([name.split('/')[-1], rle_encode(score_sigmoid)]) subm = pd.DataFrame(subm) subm.to_csv('./tmp.csv', index=None, header=None, sep='\t')
plt.figure(figsize=(16,8)) plt.subplot(121) plt.imshow(rle_decode(subm[1].fillna('').iloc[0]), cmap='gray') plt.subplot(122) plt.imshow(cv2.imread('./test_a/' + subm[0].iloc[0]));
|